An Introduction to Multimedia Data Indexing and
Retrieval

Michael Kropfberger
michael . kropfberger@gmx.net

28th November 1999

Contents

1 Introduction 2

2 Non-Semantic Indexing 3
2.1 Query by Image Content (QBIC)[2] 3

3 Semantic Indexing 4
3.1 Advanced Video Information System (AVIS)[3] 5
3.2 Object-Oriented Video Information Database (OVID)[5] 7

4 Intelligent Multimedia Data 9
4.1 Video Content Authorization, 10

5 Conclusion 10

Abstract In this paper, I will describe todays general problems with video indexing. Fur-
thermore, two possible approaches, non-semantic vs. semantic indexing, are introduced. We
will show different implementations and thoughts about indexing and retrieval. Finally, we
will show a more or less simple way to efficiently include self-explaining indexing data directly
into the video stream.

Key words video indexing and retrieval - non-semantic indexing - semantic indexing - QBIC

- AVIS - OVID - Java - MPEG - query processing - multimedia data

1 Introduction

Since the time, when computers were powerful enough to handle video and audio streams (aka
multimedia streams) in a reasonable quality, many efforts were taken to invent application
areas in this field. This does not include only local editing of multimedia data, but also — as
network connections became faster and faster — distributed video conferencing (with enhanced
blackboard facilities), distant learning, video on demand (VoD), or large video/image libraries.
All over the world, these huge amounts of data are stored in different binary raw formats like
MPEG-1[1], which is a standardized video and audio compression format for approximately
video quality.

Even very specialized video! libraries like medical operations databases or the “Alfred
Hitchcock Fan-club Video Library” [3] may consist of many hard disk and CD-ROM filling
videos and it i1s hard to find a specific video at a glance. It is easy to maintain a list of video
titles corresponding to a CD-ROM /file identifier, but there are many ad-hoc queries which
may be of interest to the video database user.

The most wanted approach to video indexing would be a completly automated procedure
without human involvement. We are looking for a computer program, which is intelligent
enough to gaze through a video, and understands the video’s contents and events. Let’s take a
movie. The program should recognize that two humans are walking along the beach, there are
sailing boats in the background. It should also “listen”? to the conversation and understand
that one human is called Tom, so apparently is male and the other human is called Jackie.
Jackie could be Jacob or Jacqueline, so our intelligent program should check the high pitch of
the yet asexual human’s voice. Those detailed specifics should be automatically generalized
because we also want to ask queries like:

1. Find all video frames where Jackie meets another human being.
2. Find all video frames where boats occur.

3. Find all video frames where the location is a beach, and two people are strolling from
the left to the right.

4. Find all video frames where a dog jumps up and down.”

!For simplicity, the reader may substitute future occurrences of the term video with wvideo/audio throughout
this document. To be more general, video could be every temporal multimedia data stream, which can be
indexed.

2This forces the inclusion of the audio tracks.

3Was there a dog in the above mentioned movie scene? :)

Of course, this has to be possible for multiple videos.

Unfortunately, this intelligent program does not exist yet. Perceptual organization (the
process of grouping image features into meaningful objects, and attaching semantic descrip-
tions to scenes through model matching[2]) by computers is a field of artificial intelligence.
This problem is far from being solved.

Now let us look on possible problems for queries concerning a single video: Although it
is pretty easy to look for a certain string pattern in a text file, there is absolutely no quickly
accessible? information stored in video streams except some meta data like video size, audio
quality, length, or creation time. Accepting this handicap, let’s multiply the above mentioned
problems for searching in multiple videos stored in a huge database.

There are two big approaches to video indexing, which both have their advantages and
disadvantages:

e non-semantic indexing
e semantic indexing

In the following two sections we will outline the different methods of video indexing in
more detail.

2 Non-Semantic Indexing

Imagine a fashion designer needing a cloth with a special mixture of colors or pattern, or a
museum cataloger looking for different vase-shaped objects in a catalog. All this information
can be calculated/extracted out of a video/image database without the need to know what is
really shown in it.

2.1 Query by Image Content (QBIC)[2]
A project called QBIC was introduced by the IBM Almaden Research Center®. It implements

the following content-based retrieval methods on large image and video databases:
e example images,
e user-constructed sketches and drawings,
e selected color and texture patterns,
e camera and object motion, and
e other graphical information.

So when you are looking for a vase-shaped object based on a sketch, you may find vases,
fish, and pictures of snowmen in your query results. Since the computer does not know which
semantics are associated with a vase, it i1s your task to refine your query by adding eg. a
clayish gray-brown pattern or a handle to your sketch.

“Even color information has to be calculated as color histograms (see Section 2) for each picture.
5To run an interactive query, visit the QBIC Web server at http://wwwqbic.almaden.ibm.com

QBIC tries to add a simple semantic indexing method by giving the user the possibility
to describe a picture with a line of text. To make the queries more powerful, these descrip-
tions may not only be associated with the whole picture but with objects in that picture.
QBIC uses an object identification algorithm based on a foreground/background model. It
works reasonably good only on museum and retail catalogs, which have a small number of fore-
ground objects on a generally separable background. This works without any user intervention,
but there is also the possibility to help the computer by setting the foreground/background
threshold, helping with outlining tools like self-fitting curves, or by clicking on non-connected
object-parts to join two objects into one. An example for connection would be a swarm of
birds. Since this swarm of birds is based on many different birds, every bird additionally could
be a single object in this scene.

Video data needs more features like
e shot detection,
e representative frame creation for each shot, and
e derivation of a layered representation of coherently moving structures/objects.

A shot is a sequence of frames, which is taken with one camera from one position. Multiple
coherent shots are called a scene[6] (eg. an interview, where a reporter and a politician is
shown alternatingly).

Shot detection means the connection of frames belonging together and is basically done
by detecting scene changes or cuts. Problems arise with softly changing effects like fades or
dissolves. The frames of one shot have many things in common, such as showing the same
background and containing the same (maybe moving) objects.

Figure 1: Stitched image from multiple images

This shot detection allows newly generated still images, eg. panning movie-scenes may
be stitched together, so we have a very wide image. Assuming an image size of w x h and
a panning (eg. camera moves from the top left to bottom right) over a shot of N frames.
After overlaying the frames, every frame ¢ (with 1 < ¢ < N) has an upper-left corner point

P;(X:,Y:). So the stitched image size is

Size, = (| maX(Xz-) — min(XZ-)| + w) X (| maX(Y;-) — mln(Y;)| + h)

Additionally to these thoughts, we have to add spherical effects because of the fish-eye effect
of camera lenses.

Another example is to remove a moving object out of a shot by using temporal median
filtering on the frames of the shot. Also different layers of a panning scene could be extracted:
eg. a shot is taken out of a moving car. There is a house in the background with some trees
closer to the camera. Apparently the trees will move faster and a wide image of the house in
the back could be generated, removing all trees in front.

3 Semantic Indexing

Think about the movie industry. There are thousands of movies available (maybe not all
digitally, I guess). In the future it will be important to rent them over new media channels
like Internet-2 (a new high-bandwidth world-spanning IP network).

Now think about news stations gathering hundreds of video/audio/text sniplets® over the
years. Reporters need them to find historic events similar or dependent to today “s news.

To gather this kind of information, you will need more semantic knowledge about the video
data. You are not looking for something, which looks like a black hat and has a circle under it,
if you are looking for Charlie Chaplin. So, we need to store names to objects in a movie. This
will allow to search for names, but not general things like “give me all frames where Charlie
Chaplin dances” or “give me all frames where somebody is dancing”.

3.1 Advanced Video Information System (AVIS)[3]

A simple but fast approach is to map a video upon several entities. We need objects like
“Charlie Chaplin”, a car, or a tree, but also activities like fishing, dancing etc. Then we need
events, which are combinations of objects and activities like “Charlie Chaplin dances around
a tree”, and “The Marshall shoots Billy the Kid”. Events being of the same activity types, are
differentiated from each other by the set of objects involved in them. To realize a query like

“find all frames where a Marshall shoots a murderer”, we have to add roles, which describe

bl
the different objects in an event. Thus, we do not only have the role of the murderer Billy
the Kid, but also a role of the murder weapon, eg. a colt. So our objectArray does not really

distinguish between living persons and normal objects.

The Example Movie In our movie (“The Killing Game”), Billy the Kid stands at the bar
and starts arguing with the bartender without any reason. The Marshall Mr. DoJ sits at a
table in the back and watches the scene all the time. Then he stands up and helps the poor
bartender, Billy gets angry, draws his gun, the Marshall does so either, and — since we have
a happy end — the Marshall shoots evil Billy. The Marshall blows the smoke of his gun and
leaves the saloon, jumps on his horse and rides out of town to look for other evil desperadoes.

Figure 2 shows the appearance of the different objects and events throughout the movie.
For internal storage, a segment lree is generated. The numbers in brackets symbolize the shot
interval (eg. [1,11) means from shot 1 to 10, excluding 11). Figure 3 shows the storage arrays
for the objects with a linked list to the nodes of the segment tree. So 05, the Marshall’s colt
links to node 2 and 4. It is seen during the shots [3,6) and [6,11), so the overall interval melts
down to [3,11), which fits the association map. Events are also stored with links to nodes,

TM

6No! Sniplets are not a newly invented Java extension!

video entities
A

e3 —

e2 I

€l | p—

05

o4 —]

o3 | /@

02 |
ol |t shot number
1 2 3 4 5 6 7 8 9 10 11 12 13
Figure 2: Our short western: association map and object-array-linked segment tree
ObjectArray EventArray
ol | Billy theKid 5 et |dispute actor: ol 1
victim: 03
02 | Marshall T ™15 observer: 02
03 | Bartender — |1 2 | murder murderer: 02 5
04 | Billies Colt T, victim: o1
weapon: 04,05
05 | Marshalls Colt T2 *4‘4 ‘ |
e3 | standard actor: 02 4
western after weapon: 05
killing scene

Figure 3: Objects, events (with roles) pointing to tree nodes

and they store role names to certain objects. In [3] various queries/operations based on this
data structures are introduced and it is shown, that, in most cases, the complexity of these
algorithms is linear.

This “flat” approach — thus very efficient — lacks support for more generalized queries like
“find all frames where a male person is threatened by a gun”.

3.2 Object-Oriented Video Information Database (OVID)[5]

To do this, we need a hierarchically organized tree, where we can categorize objects like “Billy
The Kid” as persons and actions like “shooting” as cruel activities. To be more generic,
we build up a hierarchy tree (like in figure 4), where every child node in the generalization
hierarchy tree defines an is-a relationship (>) to its parent node. So Billythe Kid = cowboy >
person.

For this subsection, a video-object is a triple (oid, I, v) where oid is the unique object ID,
I is a set of shot regions, and v is a n-tuple of attribute/value pairs [ay : v1,..., a, : v,], where
each value v; (1 < i < n) may be another oid, another interval I’, any arbitrary node out of
the generalization hierarchy tree, or a set of other values v; (1 <7 <m).

//\\

locatl
// \\ Weﬂem stcom \\ / \
oowboy civil servant bartender scientist indoor / sitive negative drink Europe
\ / Italo Ame\rcan \ / \

B|IIy the Kid police officer marshall

saloon Kill argue Texas Austria

sing dance horseriding
"A Killing Game"

undercover bar hotel room El Paso

"I'm alonesome cowboy"

Figure 4: generalization hierarchy tree of atomic values

Inheritance In figure 5, we see inheritance as a very important feature of this approach.
When an object covers a subregion of another object, some of the attributes should be inher-
ited. The inheritable attributes should be defined in advance by the database creators. In
our example, o; defines the whole movie, where 0,..0, are objects covering subregions of this
movie. It makes sense to inherit the attribute title to all subsequent objects, but there is no
need for a reference to all blood_scenes from each object.

Based on this database, we can easily ask queries like

1. Give me all frames where a person is in Texas and sings (ignoring attribute names).
2. Give me all frames with blood_scenes from various genres.
The more formal queries would be

1. Find all ouds where 3 v; > person and 3 v; > T'exas and 3 vy > sing; return all frame
intervals.

2. Find all oids where 3 v; > genre and 3 a; = blood_scenes; return all frame intervals of
all objects stored in a; for each oid.

Query (1) will find our 05 since
marshall > civilservant > person

and
“I'm a lonesome cowboy” = sing

Query (2) will match with
"AKillingGame" = ... = genre

and all frames of 04 will be returned.

ol

title: "A Killing Game"
blood_scenes: {04,...}

geographicPos: El Paso
location: saloon

guests: {marshall, Billy theKid} |
servant: bartender
event=drink

geographicPos: texas
rider: marshall

event: {"I’m alonesome cowboy",
horseriding}

o4

event: kill
murderer: marshall
victim: Billy theKid /

event: argue

victim: bartender

i2a \‘

time (shots)
>

Figure 5: Video Objects in our short western

Composition Operations When a new object o; is created, it may concern a sub-interval
of another object o; (1 # j). So every inheritable attribute of o' will be inherited to o.
Furthermore, there are two composition operations for video-objects introduced: merge and
overlap.

Generally speaking, merge creates a new object o from two existing objects o; and o; (¢ # j)
such that some descriptional data common to both of o; and o; is inherited by o, and that o’s
interval set is the union (merge) of the interval sets of o; and 0;[5]. When o; and o; have an
equal attribute name a,, with different values (0;.a,, # 0j.a,,), the first shared general value
found in the hierarchical tree is taken for o.a,,. If the two a,, have different video-objects,
these are merged together recursively. In our example, if we merge 02 and 05 to a new object
06, we have two equal attributes geographicPos and event which both hold values. Because of
the given hierarchy, the attribute geographicPos is set to Texas and the attribute event is set
to action. When the equal attribute name stores other objects, then all objects go into the
merged attribute.

Any newly generated object using the overlap operator is the result of taking the inter-
section of two video-objects o; and o; (1 # j). So only really overlapping intervals out of
both interval sets go into the new object. Using our example, we may have an object 06
being already merged from 02 and 05 with the resulting attribute vector {geographicPos =
Texas, event = action}. Now we want to overlap 06 and 04. The resulting interval set is {i2b}
and the attribute vector is {geographicPos = Texas,event = {action, kill}, murderer =
marshall,victim = Billy the Kid}.

4 Intelligent Multimedia Data

All the above introduced systems [2][3][5], doesn’t matter if indexed semantically or mnot,
rely on a server-centric model. They store their generated and/or manually added data in a
proprietary format with a proprietary program into a proprietary database. Therefore, it 1s
impossible to share multimedia data independently with various applications and machines.

In [7], Kumar and Babu emphasize to include not only indices directly into the video
stream, but also the software, which knows how to use such indices. The increase of the file
size for software and indices is not an issue, since the raw data of multimedia streams (eg. a
movie) is many times bigger.

In their demo implementation, [7] use MPEG-1 and the object oriented programming lan-
guage Java™ . MPEG-1 is a well-accepted standard[1] for compressed video/audio streams.
Fortunately, MPEG-1’s internal data structures allow the storage of user-data in the main
header, in every GOP7 and even in every frame. The pre-compiled platform-independent Java
byte code is easily inserted into the user data areas and can be loaded on the fly by the Java
class loader. Readers are referred to the Java language tutorial[9] for more information. For
inserting and reading the classes and indices out of the MPEG stream, you need a modified
encoder and decoder software. [7] uses the omnipotent Berkeley encoder[8] and decoder, since
it is free software and all (well documented) sources are available. All other decoders (free
and commercial ones like xing) ignore all data stored in the user fields.

The proposed video indexing software is heavily based on AVIS’ data structures[3]. So we
have objects O like {Billy the Kid, colt}, and actions A like {sing, kill}. The representation
of an object’s action in exactly one frame is called an event. An activity lasts over more
frames, with a start event and an end event. Additionally indexing based on color histograms
is implemented.

index stream i, ¢ index stream if+1, 2f

reference reference

main MPEG-1 header table GOP1) table GOP2 _

with Java loader class {oL02,...on} | v deostream vy f {On+1,...,0m} video stream v1, of
{ALA2,...An} (An+L. Am)}

and main index-handling
classes

Figure 6: Storage format for indexed video with reference table

In figure 6 such an indexed MPEG-1 stream is shown. The main Java classes are stored in
the main header and every GOP® does not only contain a list of objects and actions but also,
if necessary, new Java classes to handle this data. To save space, one could only store the
difference of object and action lists (persons appear and leave a scene). The index i, stores
the occurance of objects and actions for the frame v,. Since these indices only refer to objects
introduced in the preceeding reference table of this GOP, the object list and action list is
highly dynamic. This allows small lists, because only few objects and actions will be needed
in a GOP. On the other hand, using this approach of incremental introduction of objects
and actions, an overall video search needs to sequentially look at each and every reference
table. So for fast querying, only one reference table in the front is much more efficient. Also
for searching in video databases, it is unfeasable to sequentially look through all streams for
keywords. Again, we will need really quick databases for keyword search. Maybe it would

"Group of Pictures (GOP) is a data structure in MPEG-1 containing full video information data for syn-
chronizing and a fixed number of frames.
8 As mentioned above, this could also be for every single frame

make sense to store all indices into the stream but also maintain a database apart from the
raw data.

4.1 Video Content Authorization

Another usage of this in-line-data could be authorization. Different encrypted passwords could
be inserted throughout the video and by providing” a player class for the stream, a user would
be authorized by a password. So one could easily block scenes showing brutality for kids. The
embedded Java classes may also modify their own stream on the fly to keep track of usage,
pay-per-view, or download location tracking. This also enables the intelligent adaption to
different users’ knowledge levels on certain topics. In [7], Kumar and Babu did not seem to
realize a little malfunction in this approach: as mentioned above, every non-adapted MPEG-
decoder will ignore the user-specific data. A simple solution would be to scramble/encrypt
the whole video (or parts out of it), so it can only be watched by the modified decoders using
the embedded Java classes and verification algorithms.

5 Conclusion

In this paper, we have seen the need for video indexing for efficient indexing, and the problem
of indexing the right things to meet the users requirements for their queries. There is non-
semantic indexing with IBMs QIBC|[2] for color, motion detection, etc. This information can
be extracted (semi)automatically by an indexing software. For semantic indexing, somebody
has to index manually shot by shot of a video stream. To do this, there are different approaches
like AVIS[3] and OVID[5]. The most powerful approach is to mix non-semantic and semantic
indexing to provide wide-spread query types by different users. To get rid of server-centric
video indices, in [7] self-describing in-line indices with interpreter classes are introduced. To
show that industry has accepted the need for indexing, the (not yet finished) MPEG-T7 standard
will include definitions for in-line indices and interpreter information. In the already finished
MPEG-4 standard, different object layers allow rudimentary search on keywords for objects
and include programmable interactivity in the stream.

9This player class is directly packed into the stream.

10

References

[1] MPEG-1 Standard (ISO/IEC International Standard 11172-2)

[2] Flickner M, Sawhney H, Niblack W, Ashley J, Hunag Q, Dom B, Gorkani M, Hafner J,

8]

[4]

[5]

Lee D, Petkovic D, Steele D, Yanker P, “Query by Image and Video Content: The QBIC
System”, IEEE Computer Sept 1995, pp24-32

Adali S, Candan K, Chen S, Erol K, Subrahmanian VS, “The Advanced Video Informa-
tion System (AVIS): Data Structures and Query Processing”, IEEE Multimedia Systems
(1996) 4, ppl72-186

Gong K, Rowe L, “Parallel MPEG-1 Video Encoding”, 1994 Computer Science Division
- EECS University of California, Berkeley

Oomoto E, Tanaka K, “OVID: Design and Implementation of a Video-Object Database
System”, TEEE Transactions on Knowledge and Data Engineering, Vol. 5, No 4, Aug
1993, pp629-643

Steinmetz R, “Multimedia-Technologie: Grundlagen, Komponenten und Systeme” 2. Au-
flage, ISBN 3-540-62060-5 Springer Verlag Berlin Heidelberg New York

Kumar P, Babu G, “Intelligent Multimedia Data: Data 4+ Indices 4+ Inference”, TEEE
Multimedia Systems (1998) 6, pp395-407

Berkeley MPEG-1 Video Encoder “User’s Guide”, 1995 Plateau Research Group, Uni-
versity of California, Berkeley

Gosling J, McGilton H, “The Java Language Environment: A White Paper”, 1995 Sun
Microsystems, Mountain View, California

Roland Tusch, “Content-based Indexing, Exact Search and Smooth Presentation of Ab-
stracted Video Streams”, 1999 Thesis for the degree of Diplomingegieur, University of
Klagenfurt

11

